Site icon JVM Advent

JIT Compiler, Inlining and Escape Analysis

Just-in-time (JIT)

Just-in-time (JIT) compiler is the brain of the Java Virtual Machine. Nothing in the JVM affects performance more than the JIT compiler.

For a moment let’s step back and see examples of compiled and non compiled languages.

Languages like Go, C and C++ are called compiled languages because their programs are distributed as binary (compiled) code, which is targeted to a particular CPU.

On the other hand languages like PHP and Perl, are interpreted. The same program source code can be run on any CPU as long as the machine has the interpreter. The interpreter translates each line of the program into binary code as that line is executed.

Java attempts to find a middle ground here. Java applications are compiled, but instead of being compiled into a specific binary for a specific CPU, they are compiled into a bytecode. This gives Java the platform independence of an interpreted language. But Java doesn’t stop here.

In a typical program, only a small sections of the code is executed frequently, and the performance of an application depends primarily on how fast those sections of code are executed. These critical sections are known as the hot spots of the application.
The more times JVM executes a particular code section, the more information it has about it. This allows the JVM to make smart/optimized decisions and compile small hot code into a CPU specific binary. This process is called Just in time compilation (JIT).

Now let’s run a small program and observe JIT compilation.

public class App {
  public static void main(String[] args) {
    long sumOfEvens = 0;
    for(int i = 0; i < 100000; i++) {
      if(isEven(i)) {
        sumOfEvens += i;
      }
    }
    System.out.println(sumOfEvens);
  }

  public static boolean isEven(int number) {
    return number % 2 == 0;
  }
}


#### Run
javac App.java && \
java -server \
     -XX:-TieredCompilation \
     -XX:+PrintCompilation \
              - XX:CompileThreshold=100000 App


#### Output
87    1             App::isEven (16 bytes)
2499950000

Output tells us that isEven method is compiled. I intentionally disabled TieredCompilation to get only the most frequently compiled code.

JIT compiled code will give a great performance boost to your application. Want to check it ? Write a simple benchmark code.

Inlining

Inlining is one of the most important optimizations that JIT compiler makes. Inlining replaces a method call with the body of the method to avoid the overhead of method invocation.

Let’s run the same program again and this time observe inlining.

#### Run
javac App.java && \
java -server \
     -XX:+UnlockDiagnosticVMOptions \
     -XX:+PrintInlining \
     -XX:-TieredCompilation App

#### Output
@ 12   App::isEven (16 bytes)   inline (hot)
2499950000

Inlining again will give a great performance boost to your application.

Escape Analysis

Escape analysis is a technique by which the JIT Compiler can analyze the scope of a new object’s uses and decide whether to allocate it on the Java heap or (Wrong: on the method stack) [Update] handle object members directly (scalar replacement)[/Update]. It also eliminates locks for all non-globally escaping objects

Let’s run a small program and observe garbage collection.

public class App {
  public static void main(String[] args) {
    long sumOfArea = 0;
    for(int i = 0; i < 10000000; i++) {
      Rectangle rect = new Rectangle(i+5, i+10);
      sumOfArea += rect.getArea();
    }
    System.out.println(sumOfArea);
  }

  static class Rectangle {
    private int height;
    private int width;

    public Rectangle(int height, int width) {
      this.height = height;
      this.width = width;
    }

    public int getArea() {
      return height * width;
    }
  }
}

In this example Rectangle objects are created and available only within a loop, they are characterised as NoEscape and can handle object members directly (scalar replacement) instead of allocating objects in heap. Specifically, this means that no garbage collection will happen.

Let’s run the program without EscapeAnalysis.

#### Run
javac App.java && \
java -server \
     -verbose:gc \
     -XX:-DoEscapeAnalysis App

#### Output
[GC (Allocation Failure)  65536K->472K(251392K), 0.0007449 secs]
[GC (Allocation Failure)  66008K->440K(251392K), 0.0008727 secs]
[GC (Allocation Failure)  65976K->424K(251392K), 0.0005484 secs]
16818403770368

As you can see GC kicked-in. Allocation Failure means no more space is left in young generation to allocate objects. So, it is normal cause of young GC.

This time let’s run it with EscapeAnalysis.

#### Run
javac App.java && \
java -server \
    -verbose:gc \
    -XX:+DoEscapeAnalysis App

#### Output
16818403770368

No GC happened this time. Which basically means creating short lived and narrow scoped objects is not necessarily introducing garbage.

DoEscapeAnalysis option is enabled by default. Note that only Java HotSpot Server VM supports this option.

As a consequence, we all should avoid premature optimization, focus on writing more readable/maintainable code and let JVM do it’s job.

Author: Artur Mkrtchyan

Software Engineer living in Berlin.
Technology Leader and Continuous Learner with 10+ years of experience. Excellent Leader with an experience building cross-functional engineering teams and highly scalable products, especially using open-source software.

Exit mobile version